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A-optimal block designs for comparing test treatments with a control

JOHN STUFKEN*

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, Chicago, Illinois 60680

ABSTRACT

We consider the problem of comparing test treatments with a control in a proper
block design. We derive sufficient conditions for the A-optimality of both R-type and
S-type designs, and demonstrate how these conditions can be used to obtain families of
optimal designs. We give an example for the construction of the desired S-type designs. A
table with optimal R-type designs (3 < k < 10, k < v < 30) is also given.

1. INTRODUCTION

In this paper we study the problem of comparing a set of test treatments with a
control under the assumption that the experimental units can be arranged in a proper
block design. For a brief review on the available literature in this area we refer the reader
to the introduction of Hedayat and Majumdar (1985). We will use the notation Do(v, b, k)
for the collection of all connected block designs with b blocks of size k each, and based on v
test treatments (labeled 1,... , v) and a control (labeled 0). An observation Yiit, obtained
by applying treatment i (0 < i < v) on the experimental unit in block j (1 < j < b)
in plot 1 (1 < I < k), will be assumed to follow the usual additive linear model without
interactions:

it= + r, + #j + Eii.

We refer to A as the general mean, to ri as the effect by treatment i and to fi as the effect
by block j. The error terms eit are assumed to be uncorrelated, and have a common
mean 0 and a common variance a 2 . The objective of the experiment is to estimate the test
treatment-control contrasts ri - ro, 1 < i < v. We assume that this is done by using their

least square estimates, which we will denote by fi - fo. These estimates will obviously
be design dependent and the problem that remains is thus, for giv-n v, b and k, to select
a design d E Do(v,b,k) that, in some sense, gives us good estimates for the contrasts
of interest. In this paper we will judge the performance of a design by the so-called A-
criterion. A design d* E Do(v,b, k) is called A-optimal (in its class) if it minimizes

SVar d (fi

over all designs d E Do(v, b, k). Majumdar and Notz (1983) obtained a sufficient condition
for a design to be A-optimal. Utilizing this condition we will search for families of A-
optimal designs, both R-type designs (Section 2) and S-type designs (Section 3).

*Research is sponsored by Grant AFOSR 85-0320.
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2. A-OPTIMAL R-TYPE DESIGNS

The following definition first appeared in Bechhofer and Tamhane (1981).

DEFINITION 2.1. A design d E Do(v, b, k) is called a Balanced Test treatment Incomplete
Block Design (BTIBD) if the following conditions are satisfied:

1. d is incomplete.

2. There are constants A0 and X1 such that -=Z ndojndij = A0 , 1 < i < v, and
Eb

j=I nditjfldi2 j = A,, 1 < i1 $ i 2  v.

The number ndij, 0 < i < v, 1 _ j < b, is the number of times that treatment i appears
in block j under design d.

Such a design possesses a great amount of symmetry with respect to the test treatments,
and it can indeed be shown that Vard(i - 70) is independent of i, 1 < i < v. Moreover the
information matrix for estimating the test treatment control contrasts under such a design
is a completely symmetric matrix. (See Bechhofer and Tamhane (1981)). This symmetry
was utilized by Majumdar and Notz (1983) to obtain their main result. Before stating it
we need one more definition.

DEFINITION 2.2. By a BTIB(v,b,k;t,s) we denote a design d E Do(v,b,k) with the
following properties:

1. d is a BTIBD.

2. There are s blocks in d with t + 1 replications of the control, while the remaining b - s
blocks contain t replications of the control.

3. d is binary in the test treatments.

THEOREM 2.1. (Majumdar-Notz (1983)). If 3 < k < v then a BTIB(v, b, k; t, s) is A-
optimal if

g(t,s) = min{g(x,z): (x,z) E A},

where

g(x,z) := (v - 1)2 (bvk(k - 1) - (bz + z)(vk - v + k) + bx2 + 2xz + z)) -

+ ((bz + z)k - (bX2 + 2xz + z))-,

and

A:= {(z,z): {0,1,...,[k/2]- 1},z E {0,1,...,b} and z > 0 ifx = 0}.

(1.1 denotes the largest integer function).

In the remainder of this paper we will assume that the condition 3 < k < v is
satisfied. We will also adopt the terminology from Hedayat and Majumdar (1984), where
a BTIB(v,b,k;t,s) is called a Rectangular-type (R-type) design if a = 0 or b and a Step-
type (S-type) design if s E {1,... , b - 1}. Through a more detailed study of the function
g in Theorem 2.1 Hedayat and Majumdar (1985) obtained the following result on optimal
R-type designs.

2
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T HEOREM 2.2. A BTIB(v, b, k; 1, 0) is A-optimal if

(k -2) 2 + I < <(k _1) 2 .

The main result of this section is the following generalization of Theorem 2.2.

THEOREM 2.3. A BTIB(v, bk;t, 0) is A-optimal if

(2.1) (k - t-1)2 +I <t 2 V < (k-_t) 2.

PROOF: By Theorem 2.1 it suffices to show that (2.1) implies that

(2.2) g (t, 0) = min {g (x,z) :(x, z) E A).

From Hedayat and Majumdar (1985) it follows that (2.2) holds if the following two condi-
tions are satisfied.

(2.3) b(k - t)((k - 2t - 1)(v(k _ 1) _t)2 -at 2(p -2t - I)
<5 v(k - 2t - 1)(p - 2t - 1)(k -1±+ (v - 2)t)

and

(2.4) b~kc- t)at2 (p -2t +1) - (k -2t+ 1)(v(k -1) _-t) 2 )

v(k - 2t + 1)(p - 2t + 1)(k - 1 + (v -2),

where a = (V _ 1)2 and p = v(k - 1) + k. Since the right hand sides in (2.3) and (2.4) are
non-negative these inequalities are obviously satisfied if

(2.5) (k -2t -1)(v(k -- 1)-_t)2 -_at 2 (p -2t -1) 50

and

(2.6) at2 (p -2t +1) - (k -2t +1)(v(k - 1) - t) 2 < 0.

The left hand side in (2.5) equals -vq 2 (V), while that of (2.6) equals vq1 (v), where

qj (V) :=(k _ 1)t2 V2 _ ((k - t - 1)(k + t - 1)(k - 2t + 1) + 2t2 (k - 1))v

+ 2t(k - t - 1)(k - 2t + 1) + t 2 (k - 1)

and

q2 (v) :=(k - 1)t 2 V2 - ((k - t - 1)(k + t - 1)(k - 2t - 1) + 2t2 (k _ 1))V

+ 2t(k -t - 1)(k -2t - 1) + t2 (k - 1).

Hence (2.5) and (2.6) are equivalent to q2 (v) >! 0 and q, (v) < 0. Since both q, and q2 are

convex functions in v, to establish the validity of Theorem 2.3 it suffices to show that

3



(i) q, (1) 0

(ii) q2(1) < 0

(iii) ql((k - t) 2/t 2 ) < 0

(iv) q2(((k - t - 1)2 + 1)/t 2) > 0.

A simple evaluation gives us that

q1 (1) -(k - t - 1)2ik- 2t + 1) _ 0,

which shows (i). Also

q 2(1) -(k- t - 1)2(k-2t-1) <0.

This shows (ii). Further we obtain that

q ((k - t) 2 /t 2 ) = ((-2t + 1)k3 + (6t 2 - 1)k 2

- (t4 + 6t3 + 3t2 - 2t)k + 2ts + 3t 4 - t2 )/t 2 .

Since k >_ 2t and since the right hand side in the above equality, viewed as a function of
k, is decreasing on (2t,oo) it follows by replacing k by 2t that

q,((k -t) 2 /t 2 ) ! -(t - 1)2 < 0,

establishing (iii).
Finally

q2(((k - t - 1)2 + 1) / t 2 ) = ((k - 2 t - 1) ( (k - 1 ) 1 _ t 4 + t 2 ) + k -_ 1 ) / t 2 .

To see that this is non-negative we merely notice that k < v < (k - t) 2 /t 2 implies that
k > t2 + t. This shows (iv) and completes the proof of Theonrm 2.3.

We would like to point out that it can be shown that for fixed k and t at most one
value of v which satisfies (2.3) and (2.4) for all b > v is not covered by the relation (2.1).

The result of Theorem 2.3 enables us also to obtain large families of A-optimal R-
type designs from families of BIB designs. We formalize this in Corollary 2.1 and give an
example of its use in Corollary 2.2. Other examples can be found in Stufken (1986a).

COROLLARY 2.1. If there are a BIBD(v,b,k) and an integer t E {1,2,..., [k/2] - 1} such
that

(i) v> k+t, and

(ii) (k - 1)2 + 1 < t2v < k 2,
then an A-optimal BTIB(v, b, k + t; t, 0) exists.

The proof is a simple verification of (2.1). For parameters satisfying the conditions in
this corollary the result gives a formal justification for an idea of Cox (1958), who first
recommended the use of R-type designs.

4



COROLLARY 2.2. If A is a perfect square and v > k+A 11 2, then a symmetric BIBD(v, k, A)
can be embedded in a A-optimal BTIB(v, v, k + \1/2; A1/2,0).

PROOF: We verify the conditions in Corollary 2.1. It is easy to verify that A1/2 < [k/2]
under the assumptions in Corollary 2.2. Condition (i) is satisfied by assumption, while (ii)
can be seen as follows:

Av = A(v - 1) + A = k(k - 1) + A < k2,

and

Av >k(k-1) > (k- 1)2 + 1.

We conclude this section by giving a table with all A-optimal BTIB(v,b,k;t,0) designs,
3 < k < 10, k < v < 30, whose A-optimality follows from Theorem 2.3. The given values
of b in the table may be replaced by any multiple of the given number. The BIB(v,b,k-t)
needed for the construction of the given BTIB exists for all parameters. Most of them, or
their complements, can be found in Table 1.1 in Hall (1986).

Table 2.1. A-optimal BTIB(v,b,k;t,0) designs 3 < k < 10, k < v < 30

No v b k t No v b k t
1 3 3 3 1 20 15 15 10 2
2 4 6 3 1 21 15 105 5 1
3 5 10 4 1 22 16 20 5 1
4 6 10 4 1 23 16 30 10 2
5 7 7 4 1 24 17 68 6 1
6 8 28 8 2 25 18 306 6 1
7 8 56 4 1 26 19 171 6 1

* 8 9 12 4 1 27 20 76 6 1
9 9 12 8 2 28 21 21 6 1

10 10 15 5 1 29 22 462 6 1
11 10 30 9 2 30 23 253 6 1
12 11 55 5 1 31 24 552 6 1
13 11 55 9 2 32 25 30 6 1
14 12 33 5 1 33 26 65 7 1
15 12 132 9 2 34 27 117 7 1
16 13 13 5 1 35 28 126 7 1
17 13 39 10 2 36 29 406 7 1
18 14 91 5 1 37 30 145 7 1
19 14 91 10 2

5
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3. A-OPTIMAL S-TYPE DESIGNS

Families of A-optimal S-type designs are, with one exception in Cheng et al. (1986),
not available in the literature. The reason for this is twofold. Partly it is due to the fact
that a characterization of families of parameters corresponding to S-type designs whose
A-optimality can be concluded from Theorem 2.1 is harder than the analogue for optimal
R-type designs. In addition, once a family of such parameters has been established, we
will still have to answer the often difficult combinatorial question regarding their existence
by giving a method for their construction. In the case of R-type designs we could refer
to the available literature on BIB designs, for S-type designs such an easy way out is not
available. Cheng et al. (1986) proved a useful result for the determination of families of
parameters of A-optimal S-type designs. A formulation of their result is:

THEOREM 3.1. With g(x, z) and A as in Theorem 2.1, if for some t E {0,1,..., [k/2]- 1,

s E {1,2,...,b- 1}

(3.1) g(t, s) < min{g(t,s - 1),g(t,s + 1)}

then

g(t,s) = min{g(x,z) : (x,z) E A}.

This result can be used if we determine parameters for which (3.1) is satisfied and for
which we can then show the existence of the corresponding S-type design. Cheng et al.
(1986) showed proceeding in this manner that an A-optimal BTIB(k2 - 1,-(k + 2)(k 2 -

1), k; 0, -f(k + 1) (k2 - 1)) exists if k is a prime or power of a prime, where -1 is any positive
integer. In this section we will derive families of parameters which satisfy (3.1) for the
case t = 0. They will include the above result. We will then conclude this section with a
patchwork construction for designs with the obtained parameters. Let us start by looking
at g(O,z), z E (0,b]. It is not hard to show that this function attains its minimum either
at b or, assuming v > 4, at

(3.2) z0 := bk((v - 1)(v + 1)1/ ' - (v + 1))/(v + 1)(v - 3)

if z0 < b.
We are interested in the latter case. It can be verified that z0 < b if and only if

v > (k - 1)2 + 1. Thus if this condition holds we define s = [zo] or s = [zo] + 1 depending
on which of the two gives a smaller value for g(0, z). With this choice of s, condition (3.1)
will be satisfied, implying that a BTIB(v,b,k;0,s) is A-optimal, if it exists. This observation
is useful if a particular choice of v, b and k is under consideration. It is then easy to obtain
s and an attempt can be made to construct the desired optimal S-type design. A useful
first step in such an attempt is to verify whether the necessary conditions for the existence

of a BTIB(v,b,k;0,s) are satisfied. These are (see also Itedayat and Majumdar (1981)):
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(3.3) (k - 1)s = O(mod v)

(3.4) k(b- s) 0(mod v)

(3.5) (k - 2)(k - 1)slv + (k - 1)k(b- .s)lv = 0(mod v - 1).

If one or more of these conditions are violated, or the non-existence of the desired
design is obtained through some other argument, considerations as in Cheng et al. (1986)
may lead to an A-optimal or highly efficient design in Do(v, b, k).

For the purpose of deriving families of optimal S-type designs the form of s is rather
complicated. The problem is made more tractable if we make the additional assumption
that zo is an integer, and thus s = zo. A design that will be obtained under this assumption
has the extra feature that any number of copies of it forms again on A-optimal design. It is
unknown whether this is true in general. The following result characterizes all parameters
of interest for which z0 is an integer in b1... ,b- 1}.

THEOREM 3.2. The parameters for which z0 e {1,... ,b- 1 and for which the necessary
conditions (3.3), (3.4) and (3.5) are satisfied are given by

p... v =a 2 
- 1,k = ,b = -ya(a + 2)(a 2 - 1)/6e,

where a > 8 3, b = gcd(8, a(a + 2)), c = gcd(6-1 , a 2 - 1) and -1 is an arbitrary
positive integer.

PROOF: For zo to be an integer v + 1 must be a perfect square, say v a 2 - 1.

Let k = # _> 3. For zo < b it must be that v > (k- 1)2 + 1, or a > . From
(3.2) we obtain now zo = b(a + 1)/a(a + 2). Since gcd(a + 1,a(a + 2)) = 1 we see
that this is only an integer if b -- 0(mod a(a + 2)/6). If we set b = -ya(a + 2)/b
we obtain with s = zo from (3.3) and (3.4) (which imply kb - s = 0(mod v)) that
-Y/8(a 2 + a - 1)/ 0(mod a 2 - 1), or equivalently y/38/5 = 0(mod a 2 - 1). There-
fore -1 - "y(U2 - 1)/E, for some positive integer -y. This gives the parametrization for
b as asserted in the theorem. It can indeed easily be verified that (3.3), (3.4) and (3.5)
are now satisfied, while z0 = s = "/8(a + 1)(a 2 - 1)/6e, which is indeed an integer.

El

This result tells us thus that a BTIB(a 2 - 1,ya(a+2)(a 2 - 1)/bEf;0, y3(a+ 1)(a 2 _-

1)/bc) is A-optimal for any a, 3, -y, 6 and c as in Theorem 3.2. Although the conditions
(3.3), (3.4) and (3.5) are also satisfied, this does unfortunately not guarantee the existence
of the design. Patchwork constructions may resolve this problem, either for individual
designs or for certain families of designs of the above form. We give here one example
of such a construction. Let a = 6 = k. This results in a BTIB(k 2- 1,_y(k + 2)(k 2 -

1), k; 0,-y(k + 1)(k 2 - 1)), the existence of which was shown for k a prime or power of a
prime, as referred to earlier. We add to this the following result.

THEOREM 3.3. An A-optimal BTIB(k2 - 1,y (k + 2)(k 2 - 1),k; O, y(k + 1)(k 2 - 1)) exists
if k + 1 is a prime or power of a prime.

7



PROOF: It suffices to show the existence for - = 1. The layout of the desired design is as
follows:

(k+l)(k 2-1) k2 -1

i control

k-i A B ik

We have to determine the parts labeled by A and B. Start by partitioning the k2 - I test

treatments into k- 1 groups Gl,..., Gk- 1 of cardinality k+ 1 each. For each of these groups
form the trivial BIBD, (k+ 1)Ek. This gives a total of k2 -1 blocks of size k, blocks that we
use to form B. Next form an orthogonal array OA((k+) 2, k-I, k+1, 2) of index unity. The
construction of this array is well known if k + 1 is a prime or power of a prime, which is just
our assumption. Use this orthogonal array to construct a group divisible design with k2 - 1
treatments in blocks of size k- 1 in which the treatments are partitioned in k- 1 groups and
a pair of treatments from the same group does not appear at all, while treatments from dis-
tinct groups appear exactly once as a pair. Clearly we can arrange this such that the groups
are again G1 ,..., Gk-I. Take k- 1 replications of this group divisible design and let this be
A. It is easy to verify that the design constructed in this way is the desired S-type design.

El

Several other patchwork constructions for individual designs can be found in Stufken
(1986a).

4. CONCLUDING REMARKS

The results in Section 2 extend the main results of Hedayat and Majumdar (1985).
Theorem 2.3 and Corollary 2.1 provide a sufficient condition for the A-optimality of R-type
designs, a condition that can easily be verified. Large families of optimal R-type designs
can be obtained from it. It is unfortunately known that for many families of parameters
v, b and k the best design is not a R-type design. An alternative would then be to search
among S-type designs. Section 3 gives some families of optimal S-type designs and some

*, ideas for finding optimal designs for specified parameters. The construction of these S-
type designs is usually a non-trivial problem. Patching BIB designs and/or group divisible
designs together in an appropriate way may resolve problems of this kind. After these
considerations there will still be many parameters v, b, and k for which no optimal design
has been found. This will be the case if optimal designs are neither of the R-type nor
S-type or if Theorem 2.1 is not strong enough to determine their optimality. In such cases
one could either search for highly efficient R-type designs (see Stufken (1986b)) or give
consideration to the ideas suggested in Cheng et al. (1986).
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We finally point out that all the optimal designs derived in this paper are not only
A-optimal, but also MV-optimal.

Acknowledgement: This paper is based on parts of my Ph.D. dissertation. Thanks are
due to my advisor, Professor A.S.Hedayat, as well as to Professor D. Majumdar for their
support and helpful discussions.
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